The description of protein 3D structures can be performed through a library of 3D fragments, named a structural alphabet. Our structural alphabet is composed of 16 small protein fragments of 5 C alpha in length, called protein blocks (PBs). It allows an efficient approximation of the 3D protein structures and a correct prediction of the local structure. The 72 most frequent series of 5 consecutive PBs, called structural words (SWs)are able to cover more than 90% of the 3D structures. PBs are highly conditioned by the presence of a limited number of transitions between them. In this study, we propose a new method called "pinning strategy" that used this specific feature to predict long protein fragments. Its goal is to define highly probable...